Mastodon

Towards open meta-research in neuroimaging

When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. For this we need meta-research that is reproducible and updatable, or living meta-research. In this paper, we introduce the concept of living meta-research, examine prequels to this idea, and point towards standards and technologies that could assist researchers in doing living meta-research. We introduce technologies like natural language processing, which can help with automation of meta-research, which in turn will make the research easier to reproduce/update. Further, we showcase our open-source litmining ecosystem, which includes pubget (for downloading full-text journal articles), labelbuddy (for manually extracting information), and pubextract (for automatically extracting information). With these tools, you can simplify the tedious data collection and information extraction steps in meta-research, and then focus on analyzing the text. We will then describe some living meta-research projects to illustrate the use of these tools. For example, we’ll show how we used GPT along with our tools to extract information about study participants. Essentially, this talk will introduce you to the concept of meta-research, some tools for doing meta-research, and some examples. Particularly, we want you to take away the fact that there are many interesting open questions in meta-research, and you can easily learn the tools to answer them.

Project Author(s)

Kendra Oudyk; Jérôme Dockès; Julio Peraza; James Kent; Mohammad Torabi; Michelle Wang; Brent McPherson; Niusha Mirhakimi; Angela R. Laird; Alejandro de la Vega; Jean-Baptiste Poline

https://litmining.github.io/


This post was automatically generated by Kendra Oudyk


Edit this page

Next
Previous

Related